MMMPlotSuite.sensitivity_analysis#
- MMMPlotSuite.sensitivity_analysis(hdi_prob=0.94, ax=None, aggregation=None, subplot_kwargs=None, *, plot_kwargs=None, ylabel='Effect', xlabel='Sweep', title=None, add_figure_title=False, subplot_title_fallback='Sensitivity Analysis')[source]#
Plot sensitivity analysis results.
- Parameters:
- Other Parameters:
- plot_kwargs
dict, optional Keyword arguments forwarded to the underlying line plot. Defaults include
{"color": "C0"}.- ylabel
str, optional Y-axis label. Defaults to “Effect”.
- xlabel
str, optional X-axis label. Defaults to “Sweep”.
- title
str, optional Figure-level title to add when
add_figure_title=True.- add_figure_titlebool, optional
Whether to add a figure-level title. Defaults to
False.- subplot_title_fallback
str, optional Fallback title used for subplot titles when no plotting dims exist. Defaults to “Sensitivity Analysis”.
- plot_kwargs
Examples
Basic run using stored results in
idata:# Assuming you already ran a sweep and stored results # under idata.sensitivity_analysis via SensitivityAnalysis.run_sweep(..., extend_idata=True) ax = mmm.plot.sensitivity_analysis(hdi_prob=0.9)
With aggregation over dimensions (e.g., sum over channels):
ax = mmm.plot.sensitivity_analysis( hdi_prob=0.9, aggregation={"sum": ("channel",)}, )